Yes-Associated Protein (YAP) Modulates Oncogenic Features and Radiation Sensitivity in Endometrial Cancer
نویسندگان
چکیده
BACKGROUND Yes-associated protein (YAP) is a transcriptional co-activator and regulates cell proliferation and apoptosis. We investigated the clinical and biological significance of YAP in endometrial cancer (EMCA). METHODS YAP expression in 150 primary tumor tissues from patients with EMCA was evaluated by immunohistochemistry and its association with clinicopathological data was assessed. The biological functions of YAP were determined in EMCA cell lines through knockdown/overexpression of YAP. The role of YAP in modulating radiation sensitivity was also investigated in EMCA cells. RESULTS Increased nuclear YAP expression was significantly associated with higher grade, stage, lympho-vascular space invasion, postoperative recurrence/metastasis and overall survival in estrogen mediated EMCA, called type 1 cancer (p = 0.019, = 0.028, = 0.0008, = 0.046 and = 0.015, respectively). In multivariate analysis, nuclear YAP expression was confirmed as an independent prognostic factor for overall survival in type 1 EMCA. YAP knockdown by siRNA resulted in a significant decrease in cell proliferation (p<0.05), anchorage-dependent growth (p = 0.015) and migration/invasion (p<0.05), and a significant increase in the number of cells in G0/G1 phase (p = 0.002). Conversely, YAP overexpression promoted cell proliferation. Clonogenic assay demonstrated enhanced radiosensitivity by approximately 36% in YAP inhibited cells. CONCLUSIONS Since YAP functions as a transcriptional co-activator, its differential localization in the nucleus of cancer cells and subsequent impact on cell proliferation could have important consequences with respect to its role as an oncogene in EMCA. Nuclear YAP expression could be useful as a prognostic indicator or therapeutic target and predict radiation sensitivity in patients with EMCA.
منابع مشابه
Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability.
Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless,...
متن کاملBoth TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein.
The Yes-associated protein (YAP) transcription coactivator is a candidate human oncogene and a key regulator of organ size. It is phosphorylated and inhibited by the Hippo tumor suppressor pathway. TEAD family transcription factors were recently shown to play a key role in mediating the biological functions of YAP. Here, we show that the WW domain of YAP has a critical role in inducing a subset...
متن کاملDual roles of yes-associated protein (YAP) in colorectal cancer
Yes-associated protein (YAP) is a downstream effector molecule of a newly emerging tumour suppressor pathway called the Hippo pathway. YAP is a transcriptional co-activator and mis-expressed in various cancers, including colorectal cancer (CRC). Accumulating studies show that the high expression of nuclear YAP is linked with tumour progression and decreased survival. Nuclear YAP can interact wi...
متن کاملPrognostic significance of a component of the Hippo pathway, TAZ, in human uterine endometrioid adenocarcinoma
Transcriptional coactivator with PDZ-binding motif (TAZ) is a crucial component of the Hippo tumor suppressor pathway, interacting with transcriptional factors to regulate cell proliferation, apoptosis and tumorigenesis. TAZ and its paralog, Yes-associated protein (YAP), are activated at high frequencies during the progression towards malignancy in various tumors. Recently, YAP has been identif...
متن کاملLoss of tricellular tight junction protein LSR promotes cell invasion and migration via upregulation of TEAD1/AREG in human endometrial cancer
Lipolysis-stimulated lipoprotein receptor (LSR) is a unique molecule of tricellular contacts of normal and cancer cells. We investigated how the loss of LSR induced cell migration, invasion and proliferation in endometrial cancer cell line Sawano. mRNAs of amphiregulin (AREG) and TEA domain family member 1 (TEAD1) were markedly upregulated by siRNA-LSR. In endometrial cancer tissues, downregula...
متن کامل